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Magnetized plasmas
•Early Universe

•Heavy-ion collisions

• Super-dense matter in magnetars

•Electrons in Dirac/Weyl (semi-)metals
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1020 to 1024 G ~ (1 GeV)2 to (100 GeV)2

1018 to 1019 G ~ (100 MeV)2

1014 to 1016 G ~ (1 MeV)2 to (10 MeV)2

≲ 105 G ~ (100 meV)2



Heavy Ion collisions
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Heavy Ion collisions
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Heavy-ion collisions
• QGP produced at RHIC/LHC is magnetized

• Using Lienard-Wiechert potential, one finds
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Magnetic field in HIC
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• Magnetic field
– strong in magnitude ~	𝑚!

"

– depends strongly on b 
– nonuniform 
– fluctuates from event to event
– not always ⊥ to reaction plane
– short-lived (≪ 1	fm/c)
– conductivity may help a little

[Kharzeev & Liao, Nucl. Phys. News 29, 1 (2019)]
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[McLerran, Skokov, Nucl. Phys. A929, 184 (2014)]

[Huang, Rept.Prog.Phys. 79.7,076302(2016)]



Anomalous effects in Heavy-Ion Collisions
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[Miransky & Shovkovy, Phys. Rep. 576, 1 (2015)]
[Kharzeev, Liao, Voloshin, Wang, Prog. Part. Nucl. Phys. 88, 1 (2016)]

Chiral magnetic/separation effects, chiral magnetic waves

Experiment difficulties:
Large background!
=>Isobar Experiment [STAR Collaboration, 2014]

[Kharzeev&Liao, Nature Rev.Phys. 3 (2021) 1, 55-63]



Photons in heavy-ion collisions
• Photons is a Thermometer of QGP

• Photons are emitted at all stages of evolution
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https://u.osu.edu/vishnu/category/visualization/

Review: [Gabor David, Rept. Prog. Phys. 83, 046301 (2020)]



Photon sources in HIC
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Turbide, Gale, Frodermann & Heinz, Phys. Rev. C77, 024909 (2008); arXiv:0712.0732

• 𝑝! ≲ 2	GeV: thermal emission dominates

• 2	GeV ≲ 𝑝! ≲ 4	GeV: the jet-plasma contribution dominates 



Thermal photons
• The rate of the thermal emission of photons (the energy loss rate) is

• In the case of hot QCD plasma, 

• Processes:  
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[Kapusta, Lichard, Seibert, Phys. Rev. D 44, 2774 (1991)]
[Baier, Nakkagawa, Niegawa, Redlich, Z. Physik C 53 (1992) 433]

✗ ✓ ✓



• The approximate result is given by

• There are important corrections from bremsstrahlung and inelastic pair 
annihilation
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[Arnold, Moore,Yaffe, JHEP 12 (2001) 009]
[Ghiglieri et al., JHEP 05 (2013) 010]

Corrections are ~ 100% 



Photon v2 puzzle

• Most photons are produced early (before flow develops)
• Thus, v2 for photons should be very small
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Photons from magnetized plasma
•At 𝐵 ≠ 0, the leading-order polarization tensor 

    leads to a nonzero result!
•All three processes i.e., 

    are allowed by the energy conservation.
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Photon polarization tensor 

4/4/24 AUST 14

[Phys. Rep. 576, 1 (2015)]]
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FIG. 1: The leading-order one-loop Feynman diagram for the photon polarization tensor in a magnetic field.

mass m and charge q. In the case of QED plasma, for example, the values of the corresponding model parameters are
m = 0.511 MeV and q = �e, where e > 0 is the absolute value of the electron charge. Such a QED plasma, which
is made of equal number densities of electrons e� and positrons e+, can be viewed as a default choice in the analysis
below. However, by changing the values of m and q, the same results will also apply to other relativistic plasmas
made of charged fermions (e.g., the quark-gluon plasma, where the polarization e↵ects are determined primarily by
the lightest up, down, and perhaps strange quarks).

Without loss of generality, we will assume that the magnetic field B points in the +z direction, see Fig. 2. For the
vector potential, we will use the simplest Landau gauge: A = (�By, 0, 0), where B is the magnetic field strength. As
is easy to verify, the corresponding field strength tensor reads Fµ⌫ = �"

0µ⌫3
B. In such a constant background field,

the fermion Green’s function takes the following form [28]:

G(t� t
0; r, r0) = e

i�(r?,r0?)
Ḡ(t� t

0; r� r0), (1)

where r = (x, y, z) is the position vector and r? = (x, y) is its projection on the plane perpendicular to the magnetic
field. The explicit expression for the Schwinger phase is given by �(r?, r0?) = �qB(x� x

0)(y+ y
0)/2. As one can see,

the Schwinger phase is the only part of the Green’s function that breaks the translation invariance. Note that this
phase does not a↵ect the calculation of the photon polarization tensor at the leading one-loop order. The same will
not remain true at higher loops, however.

It is convenient to write the translation invariant part of Green’s function Ḡ(t; r) in Eq. (1) by using a mixed
coordinate-momentum space representation [28],

Ḡ(t; r) =

Z
d!dpz

(2⇡)2
e
�i!t+ipzzḠ(!; pz; r?), (2)

where the Fourier transform is given as a sum over the Landau levels, i.e.,

Ḡ(!, pz; r?) = i
e
�r2?/(4`2)

2⇡`2

1X

n=0

D̃n(!, pz; r?)

!2 � p2
z
�m2 � 2n|qB| . (3)

FIG. 2: A schematic illustration of the coordinate system used. The photon momentum and its projection on the plane
perpendicular to the magnetic field are denoted by k and k?, respectively.
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The numerator in the nth Landau level contribution has the following explicit form:

D̃n(!, pz; r?) =
�
!�

0 � pz�
3 +m

� 
P+Ln

✓
r2?
2`2

◆
+ P�Ln�1

✓
r2?
2`2

◆�
� i

`2
(r? · �?)L

1
n�1

✓
r2?
2`2

◆
, (4)

where L
↵

n
(z) are the generalized Laguerre polynomials [43], P± ⌘ 1

2

�
1± is?�

1
�
2
�
are the spin projectors, and

` = 1/
p

|qB| is the magnetic length. By definition, s? = sign(qB) and L
↵

�1(z) ⌘ 0.
By making use of the fermion Green’s function in the Landau-level representation, it is straightforward to write

down the momentum-space expression for the polarization function in a magnetized plasma. Within the Matsubara
finite-temperature formalism, the corresponding one-loop result reads

⇧µ⌫(i⌦m;k) = 4⇡Nf↵T

1X

k=�1

Z
dpz

2⇡

Z
d
2r?e

�ir?·k? tr
⇥
�
µ
Ḡ(i!k, pz; r?)�

⌫
Ḡ(i!k � i⌦m, pz � kz;�r?)

⇤
, (5)

where ↵ = q
2
/(4⇡) is the coupling constant, Nf is the number of active fermion flavors in the plasma, and the

trace in the integrand runs over the Dirac indices. As per standard convention, the fermionic and bosonic Matsubara
frequencies are !k = (2k+1)⇡T and ⌦m = 2n⇡T , respectively. By substituting Green’s function (3) into the definition
for ⇧µ⌫ and performing the Matsubara summation with the help of Eq. (A5) in Appendix A, we derive the following
expression for the polarization tensor:

⇧µ⌫(i⌦m;k) = �↵Nf

⇡`2

1X

n,n0=0

Z
dpz

2⇡

X

�=±1

(En,pz � �En0,pz�kz ) [nF (En,pz )� nF (�En0,pz�kz )]

2�En,pzEn0,pz�kz [(En,pz � �En0,pz�kz )
2 + ⌦2

m
]

4X

i=1

I
µ⌫

i
, (6)

where En =
p
m2 + p2

z
+ 2n|qB| is the fermion energy in the nth Landau level. Note that, in the last expression, we

also calculated the Dirac traces and integrated over the transverse spatial coordinates (r?) by using the results in
Appendices B and C. The explicit expressions for functions Iµ⌫

i
can be found in Appendix C.

By imposing a suitable regularization for the Landau-level sum in Eq. (6), in principle, one could use the brute-force
numerical methods to evaluate the (retarded) photon polarization function in a hot magnetized plasma. Moreover, the
partial contributions in the sum have a clear physical interpretation in terms of quantum transitions between Landau-
level states. In practice, however, the corresponding calculation is not easy. Additional complications come from the
need to perform the analytic continuation to real values of photon energy, i⌦m ! ⌦+ i✏. A partial resolution of the
problem is to extract the real and imaginary parts of the retarded polarization function and study them separately.
As we will discuss below, the structure of the imaginary part is much simpler than that of the real one. Thus, in
this paper, we will concentrate primarily on the imaginary part and leave the real part of the polarization tensor for
future studies.

After replacing i⌦m ! ⌦+i✏, it is straightforward to extract the imaginary part of the retarded polarization tensor.
The result reads

Im [⇧µ⌫

R
(⌦;k)] =

↵Nf

2`4

1X

n,n0=0

Z
dpz

2⇡

X

�,⌘=±1

nF (En,pz )� nF (�En0,pz�kz )

2⌘�En,pzEn0,pz�kz

4X

i=1

I
µ⌫

i
� (En,pz � �En0,pz�kz + ⌘⌦) . (7)

(Strictly speaking, this is the absorptive rather then imaginary part of the polarization tensor [35].) The � function
has a nonvanishing support when the following energy conservation equation

En,pz � �En0,pz�kz + ⌘⌦ = 0 (8)

is satisfied. Therefore, by finding the values of pz that solve the corresponding equation, the integration over pz can
be performed analytically.

Before proceeding further with the analysis, let us note that the imaginary part of the polarization tensor in Eq. (19)
is an odd function of the photon frequency ⌦. Taking this into account, we will assume without loss of generality
that ⌦ > 0 in the rest of the paper. From a physics viewpoint, the case of ⌦ > 0 could be associated with the photon
emission processes while ⌦ < 0 with the photon absorption processes. In equilibrium, of course, the rates should be
the same as required by the principle of detailed balance.

Depending on the choice of the signs of � and ⌘, the energy conservation equation (8) represents one of the three
possible processes involving particle and/or antiparticle states with the Landau level indices n and n

0. Schematically,
the corresponding processes are shown in Fig. 3. Two of them are the particle and antiparticle splitting processes
processes, e� ! e

� + � and e
+ ! e

+ + �, shown in panels (a) and (b), respectively. They correspond to transitions

Fermion propagator in a mixed coordinate-momentum space 
representation under a magnetic field: 
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Ḡ(t; r) =

Z
d!dpz

(2⇡)2
e
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where ↵ = q
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/(4⇡) is the coupling constant, Nf is the number of active fermion flavors in the plasma, and the

trace in the integrand runs over the Dirac indices. As per standard convention, the fermionic and bosonic Matsubara
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+ 2n|qB| is the fermion energy in the nth Landau level. Note that, in the last expression, we

also calculated the Dirac traces and integrated over the transverse spatial coordinates (r?) by using the results in
Appendices B and C. The explicit expressions for functions Iµ⌫
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can be found in Appendix C.

By imposing a suitable regularization for the Landau-level sum in Eq. (6), in principle, one could use the brute-force
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(Strictly speaking, this is the absorptive rather then imaginary part of the polarization tensor [35].) The � function
has a nonvanishing support when the following energy conservation equation

En,pz � �En0,pz�kz + ⌘⌦ = 0 (8)

is satisfied. Therefore, by finding the values of pz that solve the corresponding equation, the integration over pz can
be performed analytically.

Before proceeding further with the analysis, let us note that the imaginary part of the polarization tensor in Eq. (19)
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the same as required by the principle of detailed balance.
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possible processes involving particle and/or antiparticle states with the Landau level indices n and n
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is satisfied. Therefore, by finding the values of pz that solve the corresponding equation, the integration over pz can
be performed analytically.

Before proceeding further with the analysis, let us note that the imaginary part of the polarization tensor in Eq. (19)
is an odd function of the photon frequency ⌦. Taking this into account, we will assume without loss of generality
that ⌦ > 0 in the rest of the paper. From a physics viewpoint, the case of ⌦ > 0 could be associated with the photon
emission processes while ⌦ < 0 with the photon absorption processes. In equilibrium, of course, the rates should be
the same as required by the principle of detailed balance.

Depending on the choice of the signs of � and ⌘, the energy conservation equation (8) represents one of the three
possible processes involving particle and/or antiparticle states with the Landau level indices n and n

0. Schematically,
the corresponding processes are shown in Fig. 3. Two of them are the particle and antiparticle splitting processes
processes, e� ! e

� + � and e
+ ! e

+ + �, shown in panels (a) and (b), respectively. They correspond to transitions
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The numerator in the nth Landau level contribution has the following explicit form:

D̃n(!, pz; r?) =
�
!�

0 � pz�
3 +m

� 
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◆
, (4)

where L
↵

n
(z) are the generalized Laguerre polynomials [43], P± ⌘ 1

2

�
1± is?�

1
�
2
�
are the spin projectors, and

` = 1/
p

|qB| is the magnetic length. By definition, s? = sign(qB) and L
↵

�1(z) ⌘ 0.
By making use of the fermion Green’s function in the Landau-level representation, it is straightforward to write

down the momentum-space expression for the polarization function in a magnetized plasma. Within the Matsubara
finite-temperature formalism, the corresponding one-loop result reads

⇧µ⌫(i⌦m;k) = 4⇡Nf↵T

1X

k=�1

Z
dpz

2⇡

Z
d
2r?e

�ir?·k? tr
⇥
�
µ
Ḡ(i!k, pz; r?)�

⌫
Ḡ(i!k � i⌦m, pz � kz;�r?)

⇤
, (5)

where ↵ = q
2
/(4⇡) is the coupling constant, Nf is the number of active fermion flavors in the plasma, and the

trace in the integrand runs over the Dirac indices. As per standard convention, the fermionic and bosonic Matsubara
frequencies are !k = (2k+1)⇡T and ⌦m = 2n⇡T , respectively. By substituting Green’s function (3) into the definition
for ⇧µ⌫ and performing the Matsubara summation with the help of Eq. (A5) in Appendix A, we derive the following
expression for the polarization tensor:

⇧µ⌫(i⌦m;k) = �↵Nf

⇡`2

1X

n,n0=0

Z
dpz

2⇡

X

�=±1

(En,pz � �En0,pz�kz ) [nF (En,pz )� nF (�En0,pz�kz )]

2�En,pzEn0,pz�kz [(En,pz � �En0,pz�kz )
2 + ⌦2

m
]

4X

i=1

I
µ⌫

i
, (6)

where En =
p
m2 + p2

z
+ 2n|qB| is the fermion energy in the nth Landau level. Note that, in the last expression, we

also calculated the Dirac traces and integrated over the transverse spatial coordinates (r?) by using the results in
Appendices B and C. The explicit expressions for functions Iµ⌫

i
can be found in Appendix C.

By imposing a suitable regularization for the Landau-level sum in Eq. (6), in principle, one could use the brute-force
numerical methods to evaluate the (retarded) photon polarization function in a hot magnetized plasma. Moreover, the
partial contributions in the sum have a clear physical interpretation in terms of quantum transitions between Landau-
level states. In practice, however, the corresponding calculation is not easy. Additional complications come from the
need to perform the analytic continuation to real values of photon energy, i⌦m ! ⌦+ i✏. A partial resolution of the
problem is to extract the real and imaginary parts of the retarded polarization function and study them separately.
As we will discuss below, the structure of the imaginary part is much simpler than that of the real one. Thus, in
this paper, we will concentrate primarily on the imaginary part and leave the real part of the polarization tensor for
future studies.

After replacing i⌦m ! ⌦+i✏, it is straightforward to extract the imaginary part of the retarded polarization tensor.
The result reads

Im [⇧µ⌫

R
(⌦;k)] =

↵Nf

2`4

1X

n,n0=0

Z
dpz

2⇡

X

�,⌘=±1

nF (En,pz )� nF (�En0,pz�kz )

2⌘�En,pzEn0,pz�kz

4X

i=1

I
µ⌫

i
� (En,pz � �En0,pz�kz + ⌘⌦) . (7)

(Strictly speaking, this is the absorptive rather then imaginary part of the polarization tensor [35].) The � function
has a nonvanishing support when the following energy conservation equation

En,pz � �En0,pz�kz + ⌘⌦ = 0 (8)

is satisfied. Therefore, by finding the values of pz that solve the corresponding equation, the integration over pz can
be performed analytically.

Before proceeding further with the analysis, let us note that the imaginary part of the polarization tensor in Eq. (19)
is an odd function of the photon frequency ⌦. Taking this into account, we will assume without loss of generality
that ⌦ > 0 in the rest of the paper. From a physics viewpoint, the case of ⌦ > 0 could be associated with the photon
emission processes while ⌦ < 0 with the photon absorption processes. In equilibrium, of course, the rates should be
the same as required by the principle of detailed balance.

Depending on the choice of the signs of � and ⌘, the energy conservation equation (8) represents one of the three
possible processes involving particle and/or antiparticle states with the Landau level indices n and n

0. Schematically,
the corresponding processes are shown in Fig. 3. Two of them are the particle and antiparticle splitting processes
processes, e� ! e

� + � and e
+ ! e

+ + �, shown in panels (a) and (b), respectively. They correspond to transitions
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On these solutions, the expressions for the fermions energies can be rewritten in the following explicit form:

En,pz |pz=p
(±)
z

= �⌘⌦

2

2

41 + 2(n� n
0)|qB|

⌦2 � k2
z

± |kz|
⌦

s✓
1�

k2�
⌦2 � k2

z

◆✓
1�

k2+

⌦2 � k2
z

◆3

5 , (15)

En0,pz�kz |pz=p
(±)
z

=
�⌘⌦

2

2

41� 2(n� n
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z

⌥ |kz|
⌦
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1�

k2�
⌦2 � k2

z
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1�

k2+

⌦2 � k2
z

◆3

5 . (16)

As expected, these expressions define positive definite energies when the necessary conditions in Eqs. (9), (10), and
(12) are satisfied.

By making use of the explicit solutions, the � function in Eq. (19) can be rewritten in a much simpler form, i.e.,

� (En,pz � �En0,pz�kz + ⌘⌦) =
X

s=±

2En,pzEn0,pz�kz�

⇣
pz � p

(s)
z

⌘

q�
⌦2 � k2

z
� k2�

� �
⌦2 � k2

z
� k2+

� . (17)

Indeed, this can be derived by using the following result:

����
@ (En,pz � �En0,pz�kz )

@pz

����
pz=p

(±)
z

=

���kzEn,pz + ⌘p
(±)
z ⌦

���
En,pzEn0,pz�kz

�����
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(±)
z

=

q�
⌦2 � k2

z
� k2�

� �
⌦2 � k2

z
� k2+

�

2En,pzEn0,pz�kz

. (18)

To obtain the last form of the expression, we used Eqs. (14) and (15).
By substituting Eq. (17) into Eq. (19), we finally derive the expression for the imaginary part of the polarization

tensor:

Im [⇧µ⌫

R
(⌦;k)] =

↵Nf
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X

�,⌘=±1
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(⌦, kz)

nF (En,pz )� nF (�En0,pz�kz )
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z
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z
� k2+

�
4X
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I
µ⌫

i

�����
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(s)
z

. (19)

where threshold function ⇥n,n
0

�,⌘
(⌦, kz) is defined as follows:

⇥n,n
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(⌦, kz) =

8
<
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2
� + k

2
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(20)

and ⇥n,n
0

�,⌘
(⌦, kz) = 0 otherwise. This function defines the windows of the parameter space where the necessary

conditions (9), (10), and (12) are satisfied.
This analytical expression for Im [⇧µ⌫

R
(⌦;k)] is one of the main results of the paper. We will use it in the next two

sections to calculate the photon emission rate and the optical conductivity of a strongly magnetized hot relativistic
plasma. Before proceeding to the applications, however, it is instructive to verify that the polarization tensor is
transverse (i.e., kµ⇧µ⌫ = 0 and ⇧µ⌫

k⌫ = 0), as required by the gauge invariance of the theory.
Since both thermal bath and background magnetic field break the Lorentz symmetry, the final tensor structure of

the polarization tensor is rather complicated. Its explicit form is determined by tensors Iµ⌫
i

, defined in Appendix C.
As is clear from Eq. (6) and the explicit expressions for Iµ⌫

i
in Appendix C, the general tensor structure is same for

both real and imaginary parts of the polarization function. Thus, by analyzing all similar terms of the absorptive
part of ⇧µ⌫

R
(⌦;k) in Appendix D, we find that the polarization tensor takes following form:
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1

⇧µ⌫(i⌦m;k) = 4⇡Nc

X

f=u,d
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1X
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Z
dpz
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�ir?·k?tr
⇥
�µḠf (i!k, pz; r?)�

⌫Ḡf (i!k � i⌦m, pz � kz;�r?)
⇤

(1)

The polarization tensor by using Fermion propagator in a 
mixed coordinate-momentum space representation : 

1

⇧µ⌫(i⌦m;k) = 4⇡Nc

X
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2�En,pz,fEn0,pz�kz,f [(En,pz,f � �En0,pz�kz,f )
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m]
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Iµ⌫i,f (2)
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The numerator in the nth Landau level contribution has the following explicit form:

D̃n(!, pz; r?) =
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where L
↵

n
(z) are the generalized Laguerre polynomials [43], P± ⌘ 1

2

�
1± is?�

1
�
2
�
are the spin projectors, and

` = 1/
p

|qB| is the magnetic length. By definition, s? = sign(qB) and L
↵

�1(z) ⌘ 0.
By making use of the fermion Green’s function in the Landau-level representation, it is straightforward to write

down the momentum-space expression for the polarization function in a magnetized plasma. Within the Matsubara
finite-temperature formalism, the corresponding one-loop result reads

⇧µ⌫(i⌦m;k) = 4⇡Nf↵T

1X

k=�1

Z
dpz

2⇡

Z
d
2r?e

�ir?·k? tr
⇥
�
µ
Ḡ(i!k, pz; r?)�

⌫
Ḡ(i!k � i⌦m, pz � kz;�r?)

⇤
, (5)

where ↵ = q
2
/(4⇡) is the coupling constant, Nf is the number of active fermion flavors in the plasma, and the

trace in the integrand runs over the Dirac indices. As per standard convention, the fermionic and bosonic Matsubara
frequencies are !k = (2k+1)⇡T and ⌦m = 2n⇡T , respectively. By substituting Green’s function (3) into the definition
for ⇧µ⌫ and performing the Matsubara summation with the help of Eq. (A5) in Appendix A, we derive the following
expression for the polarization tensor:

⇧µ⌫(i⌦m;k) = �↵Nf

⇡`2

1X

n,n0=0

Z
dpz

2⇡

X

�=±1

(En,pz � �En0,pz�kz ) [nF (En,pz )� nF (�En0,pz�kz )]

2�En,pzEn0,pz�kz [(En,pz � �En0,pz�kz )
2 + ⌦2

m
]

4X

i=1

I
µ⌫

i
, (6)

where En =
p
m2 + p2

z
+ 2n|qB| is the fermion energy in the nth Landau level. Note that, in the last expression, we

also calculated the Dirac traces and integrated over the transverse spatial coordinates (r?) by using the results in
Appendices B and C. The explicit expressions for functions Iµ⌫

i
can be found in Appendix C.

By imposing a suitable regularization for the Landau-level sum in Eq. (6), in principle, one could use the brute-force
numerical methods to evaluate the (retarded) photon polarization function in a hot magnetized plasma. Moreover, the
partial contributions in the sum have a clear physical interpretation in terms of quantum transitions between Landau-
level states. In practice, however, the corresponding calculation is not easy. Additional complications come from the
need to perform the analytic continuation to real values of photon energy, i⌦m ! ⌦+ i✏. A partial resolution of the
problem is to extract the real and imaginary parts of the retarded polarization function and study them separately.
As we will discuss below, the structure of the imaginary part is much simpler than that of the real one. Thus, in
this paper, we will concentrate primarily on the imaginary part and leave the real part of the polarization tensor for
future studies.

After replacing i⌦m ! ⌦+i✏, it is straightforward to extract the imaginary part of the retarded polarization tensor.
The result reads

Im [⇧µ⌫

R
(⌦;k)] =

↵Nf

2`4

1X
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Z
dpz
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� (En,pz � �En0,pz�kz + ⌘⌦) . (7)

(Strictly speaking, this is the absorptive rather then imaginary part of the polarization tensor [35].) The � function
has a nonvanishing support when the following energy conservation equation

En,pz � �En0,pz�kz + ⌘⌦ = 0 (8)

is satisfied. Therefore, by finding the values of pz that solve the corresponding equation, the integration over pz can
be performed analytically.

Before proceeding further with the analysis, let us note that the imaginary part of the polarization tensor in Eq. (19)
is an odd function of the photon frequency ⌦. Taking this into account, we will assume without loss of generality
that ⌦ > 0 in the rest of the paper. From a physics viewpoint, the case of ⌦ > 0 could be associated with the photon
emission processes while ⌦ < 0 with the photon absorption processes. In equilibrium, of course, the rates should be
the same as required by the principle of detailed balance.

Depending on the choice of the signs of � and ⌘, the energy conservation equation (8) represents one of the three
possible processes involving particle and/or antiparticle states with the Landau level indices n and n

0. Schematically,
the corresponding processes are shown in Fig. 3. Two of them are the particle and antiparticle splitting processes
processes, e� ! e

� + � and e
+ ! e

+ + �, shown in panels (a) and (b), respectively. They correspond to transitions

1
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X

f=u,d

↵fT
1X

k=�1

Z
dpz
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⇥
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⇤
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m]

4X
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X
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4X

i=1
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Im [⇧µ⌫
R (⌦;k)] =

X

f=u,d
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Z
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X
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where we used the following notation:

g
µ⌫

k = diag(1, 0, 0,�1), k
µ

k = g
µ⌫

k k⌫ = k0�
µ

0 + kz�
µ

3 , k̃
µ

k = �"
µ12⌫

k⌫ = kz�
µ

0 + k0�
µ

3 ,

g
µ⌫

? = diag(0,�1,�1, 0), k
µ

? = g
µ⌫

? k⌫ = kx�
µ

1 + ky�
µ

2 , k̃
µ

? = "
0µ⌫3

k⌫ = ky�
µ

1 � kx�
µ

2 .
(22)

Note that k̃?,µk̃
µ

? = k?,µk
µ

? = �k
2
?, k̃k,µk̃

µ

k = �kk,µk
µ

k = �k
2
k, and kµk̃

µ

? = kµk̃
µ

k = 0. As we see the polarization

tensor in Eq. (21) contains five symmetric tensor structures and two antisymmetric ones. Note that the antisymmetric
contributions, defined by the component functions ⇧̃6 and ⇧̃7, appear because the time-reversal symmetry is broken
by a nonzero magnetic field.

By using the definitions in Eq. (22), one can verify that all seven tensor structures in Eq. (21) are transverse.
Therefore, the polarization tensor is transverse as well, i.e., kµ⇧µ⌫ = 0 and ⇧µ⌫

k⌫ = 0, which is consistent with the
gauge invariance. The explicit expressions for the (absorptive part of) component functions are given in Appendix D.

III. PHOTON EMISSION FROM QED PLASMA

Here we will use the general result for Im[⇧µ⌫

R
(⌦;k)] which is obtained in the previous section to study the photon

emission from a strongly magnetized hot QED plasma. The corresponding emission is directly observable when the
plasma is optically thin, i.e., its size is small compared to the photon mean free path in the plasma. For optically
thick systems, the photon emission will come only from the surface layer of a depth comparable to the mean free path.

A. Photon emission: analytical results

In quantum field theory, the photon production rate from a thermally equilibrated charged plasma can be expressed
in terms of the imaginary part of the retarded polarization tensor ⇧µ⌫

R
(⌦,k) as follows [44]:

⌦
d
3
R

d3k
= � 1

(2⇡)3
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h
⇧µ
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(⌦,k)

i

exp
�
⌦
T

�
� 1

, (23)

where ⌦ and k are the photon frequency and momentum, respectively, and T is the temperature of the plasma.
Because of the rotation symmetry about the z axis, it is convenient to use the spherical coordinates and write

d
3k = k

2
dk sin ✓d✓d�. Note that the production rate is independent of the polar angle �. Thus, without loss of

generality, the di↵erential rate is fully characterized by

d
2
R

k dk d(cos ✓)
= � 1

(2⇡)2
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h
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i
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�
k

T

�
� 1

, (24)

where we substituted ⌦ = k for the on-shell photons. The photon momentum is given by k =
p
k2? + k2

z
, where

k? = k sin ✓ and kz = k cos ✓ are the components perpendicular and parallel to the magnetic field, respectively.
By performing the Lorentz contraction in expression (19), we derive the following result:
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�
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z
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� �
⌦2 � k2

z
� k2+

�
4X
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�����
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(s)
z ,�=⌘=�1

,(25)

where, by definition, Fi = gµ⌫I
µ⌫

i
(with i = 1, 2, 3, 4). As shown in Appendix C, F2 = F3 = 0, while F1 and F4 are

nonzero. The explicit expressions for the latter two functions are given by

F1 = 4⇡
⇥�
⌦2 � k

2
z

�
`
2 � 2(n+ n

0)
⇤ ⇣

In�1,n0

0 (⇠) + In,n
0�1

0 (⇠)
⌘
+ 8⇡m2

`
2
⇣
In,n

0

0 (⇠) + In�1,n0�1
0 (⇠)

⌘
, (26)

F4 = 16⇡ In�1,n0�1
2 (⇠), (27)



Photon thermal rate
• The expression for the rate is

At 𝐵 ≠ 0, the imaginary part is 

where the Landau level energies are
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Photon thermal rate
• After integrating over 𝑝', the final expression reads

 

where 𝑔(𝑛, 𝑛′)	and 𝑔((𝑛) are combinations of the Fermi-Dirac 
distribution functions. 

The momentum thresholds are determined by
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[Phys.Rev.D 102 (2020) 7, 076010]

1
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⇥
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⇣
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⇣
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Angular dependence: small 𝑘$
•Non-smooth dependence on 𝜙 (due to many thresholds)
    Parametrization: 𝑘" = 0, 𝑘# = 𝑘! cos𝜙 and 𝑘$ = 𝑘! sin𝜙

•Average rate is maximal at 𝜙 = %
&
 (i.e., ⊥ to the reaction 

plane) 
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𝑣! < 0

reaction
plane



Angular dependence: large 𝑘$
•Rate quickly decreases with 𝑘"
•Average rate is maximal at 𝜙 = 0 (i.e., ∥	to the 
reaction plane) 
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𝑣! > 0

reaction
plane



Nonzero elliptic “flow” (𝑣-)
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Thermal rate at 𝐵 ≠ 0
•The photon production rate 
• decreases with energy (𝑘!) at large 𝑘!
• increases with temperature 
• goes to zero when 𝑘! → 0 (quantization effects)
• and, thus, has a peak at small nonzero 𝑘!

•The thermal rate at 𝐵 ≠ 0	is relatively large
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[Kapusta et al. 1991][Kapusta et al. 1991]
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Finite Chemical potential



Photon 𝑣!	𝑎𝑛𝑑	𝑣#
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FIG. 2. Anisotropic coefficient v4 for the photon emission as a function of the transverse momentum kT for two different
temperatures, T = 0.2 GeV (blue) and T = 0.35 GeV (red), and two different strengths of the magnetic field, |eB| = m2

π (panel
a) and |eB| = 5m2

π (panel b).
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FIG. 3. Anisotropic coefficient v6 for the photon emission as a function of the transverse momentum kT for two different
temperatures, T = 0.2 GeV (blue) and T = 0.35 GeV (red), and two different strengths of the magnetic field, |eB| = m2

π (panel
a) and |eB| = 5m2

π (panel b).

Another curious feature is the overall scaling of the magnitude, which goes as 1/n2. The latter may be an approximate
numerical result that holds only for the lowest three nonzero coefficients. However, tentatively it appears to remain
true also for v8, although the data become less reliable with increasing n when the threshold effects from Landau
levels produce many spikes in the angular dependence.

TABLE I. Summary of nonvanishing photon and dilepton anisotropy coefficients vn.

vn (photon emission) vn (dilepton emission)

kT !
√

|eB| kT "
√

|eB| kT "
√

|eB| & M !
√

|eB|

v2 ≃ −0.2a ≃ +0.2a ≃ +0.2

v4 ≃ +0.05 ≃ −0.05 ≃ −0.05

v6 ≃ −0.02 ≃ +0.02 ≃ +0.02

a From Ref. [54].

5

0.0 0.2 0.4 0.6 0.8 1.0

-0.06

-0.04

-0.02

0.00

0.02

0.04

0.06

kT [GeV]

v 4

|eB|=mπ
2

T=0.2 GeV
T=0.35 GeV

(a)

0.0 0.2 0.4 0.6 0.8 1.0

-0.05

0.00

0.05

0.10

kT [GeV]

v 4

|eB|=5mπ
2

T=0.2 GeV
T=0.35 GeV

(b)

FIG. 2. Anisotropic coefficient v4 for the photon emission as a function of the transverse momentum kT for two different
temperatures, T = 0.2 GeV (blue) and T = 0.35 GeV (red), and two different strengths of the magnetic field, |eB| = m2

π (panel
a) and |eB| = 5m2

π (panel b).

0.0 0.2 0.4 0.6 0.8 1.0
-0.04

-0.03

-0.02

-0.01

0.00

0.01

0.02

0.03

kT [GeV]

v 6

|eB|=mπ
2

T=0.2 GeV
T=0.35 GeV

(a)

0.0 0.2 0.4 0.6 0.8 1.0

-0.06

-0.04

-0.02

0.00

0.02

0.04

kT [GeV]

v 6

|eB|=mπ
2

T=0.2 GeV
T=0.35 GeV

(b)

FIG. 3. Anisotropic coefficient v6 for the photon emission as a function of the transverse momentum kT for two different
temperatures, T = 0.2 GeV (blue) and T = 0.35 GeV (red), and two different strengths of the magnetic field, |eB| = m2

π (panel
a) and |eB| = 5m2

π (panel b).

Another curious feature is the overall scaling of the magnitude, which goes as 1/n2. The latter may be an approximate
numerical result that holds only for the lowest three nonzero coefficients. However, tentatively it appears to remain
true also for v8, although the data become less reliable with increasing n when the threshold effects from Landau
levels produce many spikes in the angular dependence.

TABLE I. Summary of nonvanishing photon and dilepton anisotropy coefficients vn.

vn (photon emission) vn (dilepton emission)

kT !
√

|eB| kT "
√

|eB| kT "
√

|eB| & M !
√

|eB|

v2 ≃ −0.2a ≃ +0.2a ≃ +0.2

v4 ≃ +0.05 ≃ −0.05 ≃ −0.05

v6 ≃ −0.02 ≃ +0.02 ≃ +0.02

a From Ref. [54].

[Phys.Rev.D 109 (2024) 5, 056008]
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